CAMILLE BAUER

Rely on us.

- System state monitoring: class 0.2
- All-purpose:VII, P/Q/S, f, PF etc.
- Remote communication via Modbus
- DM5S: Energy metering class 0.5S
- DM5F: Response time 15...25ms
- Configuration even without power supply

SINEAX DM5S/DM5F
 Programmable premium class heavy current transducers

DM5S/DM5F - The next transducer generation

SINEAX DM5S and SINEAX DM5F are free-programmable universal measurement devices for heavy-current systems: Classical high-accuracy transducer, suited for monitoring tasks and retrofit applications in energy distribution and industry.
The devices can be adapted fast and easily to the measurement task by means of the CB-Manager software - even if there is no power supply available. Depending on the device version measured quantities can be mapped proportionally to analog DC current outputs or to Modbus.

The measurement is done uninterrupted in all four quadrants and can be adapted optimally to the system to be monitored. Both the average time of the measurement and the expected maximum signal level can be configured.
Commissioning is very easy and is supported by means of service functions, such as nameplate printing, connection check, measurement acquisition as well as simulation and trimming of the analog outputs.

Device version	SINEAX DM5S	SINEAX DM5F
Measurement time, programmable	$4 \ldots 1024$ cycles	$1 / 2,1 / 2(1), 1,2,4,8$ cycles
Fastes response time (at 50Hz)	$85 \ldots 165 \mathrm{~ms}$	$15 \ldots 25 \mathrm{~ms}$
Energy metering	max. 32 meters	not supported
Auto-scaling V/I inputs	supported	not supported

System state monitoring in class $\mathbf{0 . 2}$

These instantaneous values will be calculated in regular configurable intervals and provided to analog outputs and Modbus interface.

Description	$\mathbf{1 4}$	$\mathbf{2 L}$	$\mathbf{3 G}$	$\mathbf{3 U}$	$\mathbf{3 A}$	$\mathbf{4 U}$	$\mathbf{4 0}$
System voltage	\bullet	\bullet	-	-	-	-	-
Voltage L1-N	-	\bullet	-	-	-	\bullet	\bullet
Voltage L2-N	-	\bullet	-	-	-	\bullet	\bullet
Voltage L3-N	-	-	-	-	-	\bullet	\bullet
Voltage L1-L2	-	-	\bullet	\bullet	\bullet	\bullet	\bullet
Voltage L2-L3	-	-	\bullet	\bullet	\bullet	\bullet	\bullet
Voltage L3-L1	-	-	\bullet	\bullet	\bullet	\bullet	\bullet
Zero displacement voltage	-	-	-	-	-	\bullet	\bullet
System current	\bullet	-	\bullet	-	-	-	-
Current in phase L1	-	\bullet	-	\bullet	\bullet	\bullet	\bullet
Current in phase L2	-	\bullet	-	\bullet	\bullet	\bullet	\bullet
Current in phase L3	-	-	-	\bullet	\bullet	\bullet	\bullet
Neutral current (calculated)	-	\bullet	-	-	-	\bullet	\bullet
Active power of the system	\bullet						
Active power in phase L1	-	\bullet	-	-	-	\bullet	\bullet
Active power in phase L2	-	\bullet	-	-	-	\bullet	\bullet
Active power in phase L3	-	-	-	-	-	\bullet	\bullet
Reactive power of the system	\bullet						
Reactive power in phase L1	-	\bullet	-	-	-	\bullet	\bullet
Reactive power in phase L2	-	\bullet	-	-	-	\bullet	\bullet
Reactive power in phase L3	-	-	-	-	-	\bullet	\bullet
Apparent power of the system	\bullet						
Apparent power in phase L1	-	\bullet	-	-	-	\bullet	\bullet
Apparent power in phase L2	-	\bullet	-	-	-	\bullet	\bullet
Apparent power in phase L3	-	-	-	-	-	\bullet	\bullet

Description	14	2L	3G	3 U	3A	4 U	40
System frequency	-	\bullet	-	-	-	-	-
Active power factor of the system, PF=P / S	-	-	-	-	-	-	-
Active power factor in phase L1	-	-	-	-	-	-	-
Active power factor in phase L2	-	-	-	-	-	-	-
Active power factor in phase L3	-	-	-	-	-	-	-
Reactive power factor of the system, QF=Q / S	\bullet	\bullet	\bullet	-	-	-	-
Reactive power factor in phase L1	-	-	-	-	-	\bullet	-
Reactive power factor in phase L2	-	-	-	-	-	-	\bullet
Reactive power factor in phase L3	-	-	-	-	-	\bullet	-
LF factor of the system, $\operatorname{sign}(\mathrm{Q}) \cdot(1-\mathrm{abs}(\mathrm{PF}))$	-	-	-	-	-	-	-
LF factor in phase L1	-	-	-	-	-	-	-
LF factor in phase L2	-	-	-	-	-	-	-
LF factor in phase L3	-	-	-	-	-	-	-
Average voltage	-	\bullet	-	\bullet	-	\bullet	-
Average current	\bullet	-	-	-	-	-	-
Average current with sign of P	-	-	\bullet	-	\bullet	\bullet	-
Bimetal current of the system	-	-	-	-	-	-	-
Bimetal current in phase L1	-	-	-	-	-	-	\bullet
Bimetal current in phase L2	-	-	-	-	-	-	\bullet
Bimetal current in phase L3	-	-	-	-	-	\bullet	\bullet
Slave pointer of bimetal current of the system	\bullet	-	\bullet	-	-	-	-
Slave pointer of bimetal current in phase L1	-	-	-	-	-	-	-
Slave pointer of bimetal current in phase L2	-	-	-	-	-	-	\bullet
Slave pointer of bimetal current in phase L3	-	-	-	-	-	-	\bullet

14 = Single phase system or 4 -wire balanced or
3 -wire unbalanced phase shift
$\mathbf{2 L}=$ two-phase system (split phase)
3G $=3$-wire balanced
$3 \mathbf{U}=3$-wire unbalanced
3A $=3$-wire unbalanced in Aron connection
$\mathbf{4 U}=4$-wire unbalanced
$40=4$-wire unbalanced in Open- Y connection

The DM5S supports up to 32 energy meters. To each of these meters a base measurement quantity and a tariff can be assigned. The present tariff is set via Modbus.
For application with short measurement times, e.g. energy consumption for a single working day or production lot, the resolution can be adapted.
Thanks to uninterrupted measurement and automatic range detection a high accuracy is achieved.

- Up to 32 meters
- Up to 16 tariffs (Control via Modbus)
- Free selectable base quantity (P, Q, S, I)
- High accuracy 0.5S
- Uninterrupted measurement
- Free selectable meter resolution

Free device assembly

For parameterization the DM5 is equipped with a USB interface as a standard.
The measurement output can be performed via analog outputs and / or a Modbus interface.

DM5x-

For the designation of the device the marking of the Power LED can be overwritten with the device description. The associated label can then be printed.

Parameterization, service and measurement acquisition

The CB-Manager software provides the following functions to the user:

- Full parameterization of DM5S/DM5F
- Locally: Via USB interface (even without power supply)
- Remote: Via Modbus interface
- OFFLINE: No device connected
- Data label printing of present parameterization
- Free selectable LED marking
- Acquisition and recording of measured quantities
- Check of proper device connection
- Archiving of configuration and measurement files
- Setting or resetting of meter contents
- Simulation and trimming of analog outputs
- Comprehensive parameterization help

A security system can be activated to restrict the access to device data.

Configuration interface USB

Physics:	USB, max. 3 m
Connection:	Socket USB-B
Device class:	Human interface device (HID)

Measurement uncertainty

Reference conditions:
(acc. IEC/EN 60688)
Voltage, current:
Power:
Power factor:
Frequency:
Ambient $23^{\circ} \mathrm{C} \pm 1 \mathrm{~K}$, sinusoidal, $\mathrm{PF}=1$,
Frequency $50 \ldots 60 \mathrm{~Hz}$, burden 250Ω, Measurement over 8 cycles (DM5S), 1 cycle (DM5F) $\pm 0.15 \%$ FSU / FSI ${ }^{11}{ }^{2)}$
$\pm 0.2 \%\left(\right.$ FSU x FSI) ${ }^{2)}$
$\pm 0.1^{\circ}$)
Active energy (DM5S only): Class 0.5S, EN 62 053-22
Reactive energy (DM5S only): Class 2, EN 62 053-23

1) FSU / FSI - Configured maximum value of voltage / current inputs
${ }^{2)}$ Additional uncertainty if neutral wire not connected (3-wire connections)

- Voltage, power: 0.1% of measurement value; Load factor: 0.1°
- Energy: Voltage influence $\times 2$, angle uncertainty $\times 2$

Safety

Current inputs are galvanically isolated from each other.
Protection class:
Pollution degree:
Protection rating:
Overvoltage category:

II (protective insulation, voltage inputs via protective impedance)
2
IP30 (housing), IP20 (terminals)
CAT III up to 600V

Ambient conditions, general information

Operating temperature: $\quad-10$ up to 22 up to 24 up to $+55^{\circ} \mathrm{C}$
Storage temperature: $\quad-25$ up to $+70^{\circ} \mathrm{C}$
Temperature influence: $\quad 0.5 \times$ measurement uncertainty per 10 K
Long term drift: $\quad 0.5 \times$ measurement uncertainty per year
Others:
Relative humidity: -
Altitude: $\leq 2000 \mathrm{~m}$ max.
Device to be used indoor only!
Mechanical attributes
Dimensions ($\mathrm{H} \times \mathrm{B} \times \mathrm{D}$): Orientation:
Housing material:
Weight:
Flammability class:
$110 \times 70 \times 70 \mathrm{~mm}$
Any
Polycarbonat
500 g
V-0 acc. UL94, self-extinguishing, non dripping, free of halogen

Order code

SINEAX DM5S, programmable, up to 4 analog outputs, USB, Modbus/RTU, meters SINEAX DM5F, programmable, $1 / 2$ cycle measurement, up to 4 analog outputs, USB, Modbus/RTU

| Features, selection | Blocking
 code | No-go
 with
 blocking
 code |
| :--- | :--- | :---: | :---: | :---: | DM5x-

CAMILLE BAUER

Rely on us.

Camille Bauer Metrawatt AG
Aargauerstrasse 7
CH-5610 Wohlen / Switzerland
Phone: +41566182111
Fax: $\quad+41566182121$
info@cbmag.com
www.camillebauer.com

