Input: $\quad \mathbf{0 - 5 0} \mathbf{~ m V}$ to ± 10 VDC, $\mathbf{0 - 1} \mathrm{mA}$ to $\mathbf{4 - 2 0} \mathrm{mADC}$

Output: One 8 Amp DPDT Relay or Two 8 Amp SPDT Relays

- One Minute Setup for 24 Input Ranges
- Switch Selectable Relay Configuration
- Adjustable Setpoint and Deadband
- Input LoopTracker ${ }^{\oplus}$ and Alarm Status LEDs
- Hot Swappable Plug In Design
- Alarm Test / Reset Button
- Built-In Loop Power Supply for Sink/Source Input

Applications

- Process Limit Backup Alarm
- Tank Level Alarm
- Process Signal Over, Under, Out-of-Range Alarm

DC Input Ranges

24 switch selectable ranges. See table on other side.
Voltage: $\quad 0-50 \mathrm{mVDC}$ to $0-10$ VDC
Bipolar voltage: $\quad \pm 5 \mathrm{VDC}$ or ± 10 VDC
Current: $\quad 0-1 \mathrm{mADC}$ to $0-20 \mathrm{mADC}, ~ 4-20 \mathrm{mADC}$
Input Impedance, Burden, Protection
Voltage: $\quad 250 \mathrm{k} \Omega$ minimum
Current: $\quad 50 \Omega$ typical (1 VDC burden at 20 mA)
Common mode protection: 750 VACp or 750 VDC

Input Loop Power Supply

18 VDC unregulated, $25 \mathrm{mADC},<1.5 \mathrm{Vp}$-p ripple May be selectively wired for sinking or sourcing mA input

LoopTracker

Variable brightness LED indicates input loop level and status

API 1080 G Relay Output

Two SPDT form C contact sets operating in unison as one DPDT contact set
One 12 turn setpoint potentiometer, $0-100 \%$ of span
One 12 turn deadband potentiometer, 1-100\% of span
Field configurable alarm type, action, and latching

API 1090 G Relay Output

Two independent SPDT form C contact sets
Two 12 turn setpoint potentiometers, 0-100\% of span Two 12 turn deadband potentiometers, 1-100\% of span Field configurable alarm type, action, and latching

Relay Contact Rating

8 A @ 240 VAC resistive load or 30 VDC resistive load max.
Caution: Do not exceed socket voltage rating
Use an RC snubber for inductive loads

Output Test/Reset Button

Toggles relay to opposite state when pressed Resets latching relay if latching relay mode is selected

Response Time

70 milliseconds typical
Ambient Temperature Range and Stability
$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ operating ambient
Better than $\pm 0.02 \%$ of span per ${ }^{\circ} \mathrm{C}$ stability, calculated, not tested

Housing and Sockets

IP 40, requires installation in panel or enclosure
API 011 or API 011 FS socket
Socket mounts to 35 mm DIN rail or can be surface mounted

Power

Standard: 115 VAC $\pm 10 \%, 50 / 60 \mathrm{~Hz}, 2.5 \mathrm{~W}$ max.
P option: $\quad 85-265$ VAC $50 / 60 \mathrm{~Hz}, 60-300 \mathrm{VDC}, 2.5 \mathrm{~W}$ typ.
A230 option: $230 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 2.5 \mathrm{~W}$ max.
D option: $\quad 9-30 \mathrm{VDC}, 2.5 \mathrm{~W}$ typical

Precautions
WARNING! All wiring must be performed by a qualified electrician or instrumentation engineer. See diagram for terminal designations and wiring examples. Consult factory for assistance.
WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Précautions

ATTENTION! Tout le câblage doit être effectué par un électricien ou ingénieur en instrumentation qualifié. Voir le diagramme pour désignations des bornes et des exemples de câblage. Consulter l'usine pour assistance.
ATTENTION! Éviter les risques de choc! Fermez le signal d'entrée, le signal de sortie et l'alimentation électrique avant de connecter ou de déconnecter le câblage, ou de retirer ou d'installer le module.
API maintains a constant effort to upgrade and improve its products. Specifications are subject to change without notice. See api-usa.com for latest product information. Consult factory for your specific requirements. WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Range Selection

Input ranges are factory calibrated (at $24^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$) and do not require adjustment. Select ranges before installation. See the model/serial number label for module information, options, or if a custom range was specified.
Set input selector switch A to "I" for a current input or to "V" for a voltage input.
Switch settings B and C determine the input range.

Input Range	Switch	API 1080 G Alarm Settings				
	ABC			Latch	Action	D
0-50 mV	V 81			No	Normal	2
0-100 mV	V 91			No	Reverse	6
0-200 mV	V A 1			Yes	Normal	0
0-250 mV	VC1			Yes	Reverse	4
$0-400 \mathrm{mV}$	VB1			No	Normal	3
0-500 mV	V01			No	Reverse	7
$\pm 50 \mathrm{mV}$ *	VA 4			Yes	Normal	1
$\pm 100 \mathrm{mV}$ *	V B 4			Yes	Reverse	5
0-1 V	V11					
0-2 V	V 21		1090	G Ala	Setting	
0-2.5 V	V 41	SP1	SP2	Latch	Action	D
0-4 V	V 31	HI	LO	No	Normal	6
1-5 V	V 5 F	HI	L0	No	Reverse	E
0-5 V	V 51	HI	LO	Yes	Normal	2
0-10 V	V 61	HI	LO	Yes	Reverse	A
$\pm 5 \mathrm{~V}$	V64	HI	HI	No	Normal	4
$\pm 10 \mathrm{~V}$	V 74	HI	HI	No	Reverse	C
0-1 mA	IC 1	HI	HI	Yes	Normal	0
0-2 mA	I 01	HI	HI	Yes	Reverse	8
0-4 mA	I 11	LO	LO	No	Normal	7
$0-8 \mathrm{~mA}$	I 21	L0	L0	No	Reverse	F
2-10 mA	I 2 F	L0	LO	Yes	Normal	3
0-10 mA	I 41	LO	LO	Yes	Reverse	B
0-16 mA	I 31	L0	HI	No	Normal	5
0-20 mA	I 51	L0	HI	No	Reverse	D
4-20 mA	I 5 F	LO	HI	Yes	Normal	1
* AP1090 G only		LO	HI	Yes	Reverse	9

Socket and Mounting

Install module in a protective panel or enclosure. Allow space around module for air flow. Use API 011 or API 011 FS socket. See specifications for maximum allowable socket voltages. The socket clips to a standard 35 mm DIN rail or can be mounted to a flat surface.

Signal Input Terminals

See wiring diagrams below. Polarity must be observed for input wiring connections. If the input does not function, check switch settings and wiring polarity.
The milliamp input can be used with either sinking or sourcing mA transmitters. Determine if your transmitter provides power to the current loop or if it must be powered by the API module. Only one device must provide power to the current loop. Use a multi-meter to check for voltage at the transmitter's output terminals. Typical voltage may be in the range of 9 to 24 VDC. In this case, wire the device to terminals 4 and 5 .

Relay Output Terminals

See wiring diagrams below. API modules do not provide power to the relay contacts. Inductive loads (motors, solenoids, contactors, etc.) will greatly shorten relay contact life unless an appropriate RC snubber is installed.

Module Power Terminals

Check model/serial number label for module operating voltage to make sure it matches available power.
When using DC power, polarity must be observed. Wire (+) to terminal 1 and negative (-) to terminal 3.

* Do not make connections to unused terminals!

To maintain full isolation avoid combining power supplies in common with input, output, or unit power.

HI Alarm RED
Relay 1

API 1080 G Alarm States with Normal Action HI Alarm

No Alarm	HI Alarm	LO Alarm
GREEN Relay 1	RED Relay 1	GREEN Relay 1
8 NC	$\bigcirc 8 \mathrm{NC}$	8
$\begin{array}{cc} t & 7 \text { Com. } \\ \square & 6 \text { NO } \end{array}$	$\pm .7$ Com.	$\begin{array}{ll} \forall & 7 \text { Com. } \\ \square & 6 \text { NO } \end{array}$
GREEN Relay 2	GREEN Relay 2	RED Relay 2
$\longrightarrow 11 \text { NC }$	-11 NC	$\nabla 11 N C$
$\square 9 \mathrm{NO}$	$\square 9 \mathrm{NO}$	$\triangle 9 \mathrm{NO}$

[^0]
Setpoint

This multi-turn potentiometer (one for each setpoint on the API 1090 G) allows the operator to adjust the level at which the alarm is activated. This control is adjustable from 0 to 100%

of the input range.

Deadband

The deadband potentiometer (one for each setpoint on the API 1090 G) allows the alarm trip/reset window to be adjusted symmetrically about the setpoint from 1 to 100% of the span.
Deadband allows the operator to fine tune the point at which the alarm trips and resets. The deadband is typically used to prevent chattering of the relays or false trips when the process signal is unstable or changes rapidly.

Adjustments

To calibrate the alarm section, set the deadband control to the minimum (counterclockwise). The deadband will be 1% of input span in this case.
Set the signal source to a reference that represents the desired trip point.
Adjust the setpoint control to the point at which the relay changes state from a non-alarm to an alarm condition.
If a larger amount of deadband is desired turn the deadband potentiometer clockwise. The deadband is symmetrical about the setpoint; both transition points will change as deadband is increased.
Alternately set the setpoint and deadband until the desired trip/ reset points are set.
The adjustment procedure needs to be repeated any time switch settings are changed.

Output Test / Latching Function

When the test button is depressed it will drive the relays to their opposite state. This can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the relays will return to their prior states.
When the latching mode is selected, it will be necessary to push the output test button or remove power from the module to reset the alarm. The alarm will only reset if the alarm condition no longer exists.

Operation

The green LoopTracker ${ }^{\circledR}$ input LED provides a visual indication that a signal is being sensed by the input circuitry of the module. It also indicates the input signal strength by changing in intensity as the process changes from minimum to maximum. If the LED fails to illuminate, or fails to change in intensity as the process changes, check the module power or signal input wiring. Note that it may be difficult to see the LEDs under bright lighting conditions.
The bi-color alarm LED provides a visual indication of the alarm status. In all configurations, a green LED indicates a non-alarm condition and a red LED indicates an alarm condition.

High Alarm

The alarm relay changes state when the input exceeds the deadband trip point. The relay resets when the input drops below the deadband reset point unless latching is enabled. For a high alarm, the trip point is above the reset point.

Low Alarm

The alarm relay changes state when the input goes below the deadband trip point. The relay resets when the input exceeds the deadband reset point unless latching is enabled. For a low alarm, the trip point is below the reset point.

Latching

In this mode the alarm latches when an alarm occurs. The Test button or powering the module off can be used to reset the alarm provided the alarm condition no longer exists.

Normal Acting Alarms

Normal acting alarms energize the relay coils in a non-alarm condition and de-energize them in an alarm condition. This will create an alarm condition if the module loses power.

Reverse Acting Alarms

Reverse-acting alarms energize the relay coils in an alarm condition and de-energize them in a non-alarm condition. There is no alarm condition with module power off.

[^0]: API 1090 G Alarm States with Normal Action HI/LO Alarms

