Quick Link: api-usa.com/6393

Removable Plugs

True RMS 0-50 mVAC to 0-300 VAC, 0-1 mAAC to 0-1000 mAAC

2 Outputs: 0-1 V to 0-10 V, ±1 V to ±10 V, 0-1 mA to 20 mA, 4-20 mA

One Input to Two Outputs with Full Isolation

- Zero and Span Output Calibration Potentiometers
- Full 1200 V Input/Output /Power Isolation
- Input and Output LoopTracker® LEDs
- Output Test Button for Each Channel
- Built-In Loop Power Supplies for Sink/Source I/O

- Split. Convert. Boost, and Rescale Process Signals
- Split Process Signals for Control and Validation
- Interface a Process Signal with Multiple Panel Meters, PLCs, Recorders, Data Acq., DCS, & SCADA Systems

AC Input Range

Factory configured, please specify input type and range Voltage: 0-50 mVAC to 0-300 VAC Current: 0-1 mAAC to 0-1000 mAAC

Measurements are true RMS

Input Frequency

40 Hz to 1000 Hz sinusoidal

Input Impedance (Voltage Input)

220 kO minimum

Input Voltage Burden (Current Input)

1.0 V_{RMS} maximum

Input Protection, Common Mode

750 VDC or 750 VACp

LoopTracker

Variable brightness LEDs indicate I/O loop level and status One for input, one for each output

Channel 1 and Channel 2 DC Output Ranges

Factory configured, please specify for each output channel Voltage:

0-1 VDC to 0-10 VDC, 10 mA max up to 20 VDC with M19, M29, M39

Bipolar voltage: ±1 VDC to ±10 VDC

0-1 mADC to 0-25 mADC, 4-20 mADC Current:

20 V compliance, 1000 Ω at 20 mA

Output Calibration

Multi-turn zero and span potentiometers for each output channel ±15% of span adjustment range typical

Output Loop Power Supplies

20 VDC nominal, regulated, 25 mADC for each output channel May be selectively wired for sinking or sourcing mA output

Output Test/Override

Front momentary buttons or external contact closures for each channel to set output test levels.

Each output test level potentiometer adjustable 0-100% of span

Output Ripple and Noise

Less than 10 mVRMS

Linearity

Better than ±0.1% of span

Ambient Temperature Range and Stability

-10°C to +60°C operating ambient

Better than ±0.04% of span per °C stability

Response Time

70 milliseconds nominal

Isolation

Full 4-way, 1200 VRMs minimum

Installation Environment

IP 40, requires installation in panel or enclosure with adequate ventilation

For use in Pollution Degree 2 Environment

Mount vertically (as shown in picture) to a 35 mm DIN rail allowing minimum 1" (25 mm) above and below housing vents for air circulation.

Power

85-265 VAC, 50/60 Hz or 60-300 VDC, 6 W maximum D versions: 9-30 VDC or 10-32 VAC 50/60 Hz, 6 W maximum

Dimensions and Connectors

1.78" W x 4.62" H x 4.81" D

45 mm W x 117 mm H x 122 mm D

Eight 4-terminal removable connectors, 14 AWG max wire size

6 YEAR

Sink or Source mA Output for **Each Channel**

2 3 5 6 78

Output LoopTracker LED for Each Channel

Each Channel

Zero and Span for **Fach Channel**

Input LoopTracker I FD

Custom I/O Ranges

Connect Sink or Source mA Input

Universal Power

18 19

Channel 1

IsoSplitter®

APD 6393

AC to DC Isolated Signal Splitter

20

25 26 27 28 29 30

21 22 23

See Wiring Diagrams on **Next Page**

Description

The APD 6393 IsoSplitter accepts an AC voltage or current input and provides two optically isolated DC voltage or current outputs that are linearly related to the input. The input range and each output range are independent and can be specified as required. This provides an economical solution when one signal must be sent to two different devices.

Typical applications include isolation, output splitting, output device separation and redundancy (i.e. to prevent failure of the entire loop if one device fails), or a combination of these.

The input signal is filtered, amplified, split, and then passed through an opto-coupler to the output stages. Full 4-way isolation (input, output 1, output 2, power) make this module useful for ground loop elimination, common mode signal rejection, and noise pickup reduction.

I/O Sink/Source Versatility

Standard on the APD 6393 is a 15 VDC sensor excitation supply for the input channel and 20 VDC loop excitation supplies for each output channel. These power supplies can be selectively wired for sinking or sourcing allowing use with any combination of powered or unpowered milliamp I/O devices.

Models are factory ranged. See I/O ranges above left. Please specify ranges and options on order

Input range

Channel 1 output range Channel 2 output range

See options at right

Model	Description	Power
APD 6393	IsoSplitter 1 input to 2 outputs	85-265 VAC, 50/60 Hz or 60-300 VDC
APD 6393 D		9-30 VDC or 10-32 VAC

LoopTracker

API exclusive features include three LoopTracker LEDs (green for input, red for each output) that vary in intensity with changes in the process input and output signals.

These provide a quick visual picture of your process loop at all times and can greatly aid in saving time during initial startup and troubleshooting.

Output Test

An API exclusive feature includes output test buttons for each channel to provide a fixed output (independent of the input) when held depressed. A test button is provide for each output channel. The output test greatly aids in saving time during initial startup and/or troubleshooting.

The test output level for each channel is potentiometer adjustable from 0 to 100% of the output span.

Terminals are provided to operate the test functions remotely for each channel. This also allows use as a remote manual override to provide a temporary fixed output if desired.

Options and Accessories

Options-add to end of model number

Channel 1 I/O reversal (ie. 4-20 mA in to 20-4 mA out)

Channel 2 I/O reversal (ie. 4-20 mA in to 20-4 mA out)

R3 Channel 1 and channel 2 I/O reversal

Channel 1 high voltage output >10 V up to 20 V

M29 Channel 2 high voltage output >10 V up to 20 V

M39 Channel 1 and channel 2 high voltage output

Conformal coating for moisture resistance Accessory-order as separate line item

API BP4 Spare removable 4 terminal plug, black

Instructions APD 6393 (

Precautions

WARNING! All wiring must be performed by a qualified electrician or instrumentation engineer. See diagram for terminal designations and wiring examples. Consult factory for assistance.

WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Précautions

ATTENTION! Tout le câblage doit être effectué par un électricien ou ingénieur en instrumentation qualifié. Voir le diagramme pour désignations des bornes et des exemples de câblage. Consulter l'usine pour assistance.

ATTENTION! Éviter les risques de choc! Fermez le signal d'entrée, le signal de sortie et l'alimentation électrique avant de connecter ou de déconnecter le câblage, ou de retirer ou d'installer le module.

API maintains a constant effort to ungrade and improve its products Specifications are subject to change without notice. See api-usa.com for latest product information. Consult factory for your specific requirements.

WARNING: This product can expose you to chemicals including nickel, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Electrical Connections

Each product is factory configured to your exact input and output ranges as indicated on the serial number label. See wiring diagrams at right. Observe polarity, If the output does not function, check wiring and polarity.

* Do not make any connections to unused terminals or use them as wiring junctions for external devices. This may cause permanent damage to the module!

Outputs

Polarity must be observed for signal output wiring connections. If the input and/or output do not function, check wiring

For milliamp output ranges determine if your devices provide power to the current loop or if the loop must be powered by the APD module. Typical voltage may be 9-24 VDC at your device's terminals if it provides power to the loop.

Device for Output Channel 1	Terminal	Terminal
Measuring/recording device accepts a voltage input.	3 (–)	4 (+)
Measuring/recording device has an unpowered or passive mA input. APD module provides the loop power.	3 (–)	4 (+20 V)
Measuring/recording device has a mA input and powers the current loop.	2 (–)	3 (+)
Device for Output Channel 2	Terminal	Terminal
Device for Output Channel 2 Measuring/recording device accepts a voltage input.	Terminal 7 (–)	Terminal 8 (+)
Measuring/recording device accepts a		

Input

Any polarity may be used for an AC input. A transmitter DC power supply is available, but is not commonly used with AC

AC Input	Terminal	Terminal
Device with an AC voltage or AC milliamp output.	17	19
Transmitter power supply.	18 (+15 VDC)	19

Check model/serial number label for module operating voltage to make sure it matches available power.

When using DC power, either polarity is acceptable, but for consistency, wire positive (+) to terminal 25 and negative (-)

The power supplies are fuse protected and the unit may be returned to API for fuse replacement.

Mounting to a DIN Rail

Install module vertically on a 35 mm DIN rail in a protective enclosure away from heat sources. Do not block air flow. Allow 1" (25 mm) above and below housing vents for air circulation.

- 1. Tilt front of module down and position the lower spring clips against the bottom edge of DIN rail.
- 2. Push front of module upward until upper mount snaps into place.

Removal

Avoid shock hazards! Turn signal input, output, and power off.

- 1. Push up on bottom back of module.
- 2. Tilt front of module downward to release upper mount from top edge of DIN rail.
- 3. The module can now be removed from the DIN rail.

Upper Mount

Calibration

Input and output ranges are factory pre-configured (at 24°C ±1°C). Front-mounted Zero and Span potentiometers for each channel can be used to compensate for load and lead variations

- 1. Apply power to the module and allow a minimum 20 minute warm up time.
- 2. Using an accurate calibration source, provide an input to the module equal to the minimum input required for the
- 3. Using an accurate measurement device for the output, adjust the Zero potentiometer for the exact minimum output desired. The Zero control should only be adjusted when the input signal is at its minimum. This will produce the corresponding minimum output signal. For example: 4 mA for a 4-20 mA output or -10 V for a ±10V output.
- 4. Set the input at maximum, and then adjust the Span pot for the exact maximum output desired. The Span control should only be adjusted when the input signal is at its maximum. This will produce the corresponding maximum output signal. Example: for 4-20 mA output, the Span control will provide adjustment for the 20 mA or high end of the signal.
- 5. Repeat adjustments for both output channels for maximum

Output Test Function

When the Test button is depressed it will drive the output with a known good signal that can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the output will return to normal.

Each Test Cal. potentiometer can be adjusted to set the test output from 0 to 100% of the output span. Press and hold the Test button and adjust the corresponding Test Cal. potentiometer for the desired output level.

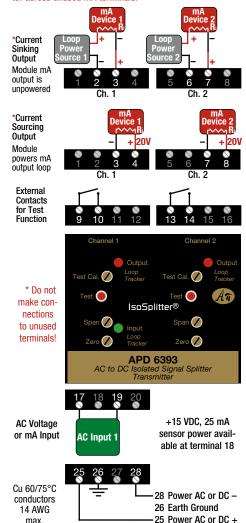
They may optionally be externally wired for remote test operation or a manual override. See wiring diagram at right.

Operation

The APD 6393 IsoSplitter® accepts an AC voltage or current input and provides two optically isolated DC voltage or current outputs that are linearly related to the input.

The green LoopTracker® input LED provides a visual indication that the signal is being sensed by the input circuitry of the module. It also indicates the input signal strength by changing in intensity as the process changes from minimum to maximum.

If the LED fails to illuminate, or fails to change in intensity as the process changes, check the module power or signal input


Two red LoopTracker output LEDs provide a visual indication that the output signals are functioning. They become brighter as the input and each corresponding output change from minimum to maximum.

For a current output the red LED will only light if the output loop current path is complete. For either current or voltage outputs, failure to illuminate or a failure to change in intensity as the process changes may indicate a problem with the module power or signal output wiring. Note that it may be difficult to see the LEDs under bright lighting conditions.

mA output: determine if receiving device has a passive or powered input. The module can be wired for a sinking or sourcing mA output.

* To avoid damage to the module, do not leave any unused mA outputs disconnected. Use a 1000 0hm 1/2 Watt resistor across unused mA terminals.

To maintain full isolation avoid combining power supplies in common with inputs, outputs, or unit power,

max.